Received 8 January 2007 Accepted 15 January 2007

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

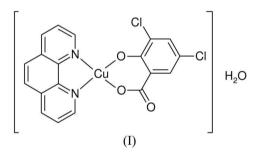
Shu-Hua Zhang,* Xiao-Zhen Feng, Guang-Zhao Li, Li-Xia Jing and Zheng Liu*

Key Laboratory of Non-Ferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China

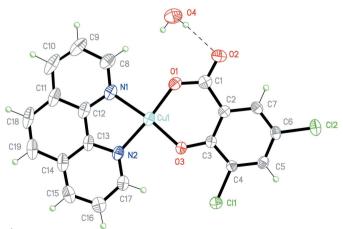
Correspondence e-mail: zsh720108@21cn.com, lisa4.6@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C}-\text{C}) = 0.007 \text{ Å}$ R factor = 0.046 wR factor = 0.111 Data-to-parameter ratio = 12.1


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(3,5-Dichloro-2-oxidobenzoato- $\kappa^2 O, O'$)-(1,10-phenanthroline- $\kappa^2 N, N'$)copper(II) monohydrate


In the title compound, $[Cu(C_7H_2Cl_2O_3)(C_{12}H_8N_2)]\cdot H_2O$, the Cu^{II} atom is coordinated in a slightly distorted square-planar geometry by two O atoms from a 3,5-dichloro-2-oxidobenzoate dianion and by two N atoms from 1,10-phenanthroline. The Cu^{II} complex and water molecules are linked into chains through $O-H\cdots O$ hydrogen bonds.

Comment

Metal-organic complexes containing pyridines (Stemmler *et al.*, 1995; Zhong *et al.*, 2003; Guthrie *et al.*, 1980) are of general interest for inorganic and bioinorganic chemists. The title compound, (I), is a new Cu^{II} complex prepared by reaction of 3,5-dichloro-2-hydroxybenzoic acid, 1,10-phenanthroline and copper(II) nitrate.

In (I), the Cu^{II} atom is coordinated by two O atoms from a 3,5-dichloro-2-oxidobenzoate dianion and by two N atoms from 1,10-phenanthroline in a slightly distorted square-planar geometry (Fig. 1 and Table 1). The water molecules form $O-H\cdots O$ hydrogen bonds (Table 2) to the carboxylate O atoms, linking the complexes into chains running along the *a* axis.

© 2007 International Union of Crystallography All rights reserved

Figure 1 The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms. The dashed line indicates a hydrogen bond.

Experimental

A solution of 3,5-dichloro-2-hydroxybenzoic acid (2 mmol, 0.414 g) and potassium hydroxide (2 mmol, 0.112 g) in distilled water (15 ml) was slowly added to a solution of copper(II) nitrate (1 mmol, 0.260 g) in distilled water (10 ml). The mixture was stirred and refluxed for 2 h at room temperature. 1,10-Phenanthroline (2 mmol, 0.396 g) was added and the reaction continued for a further 2 h. The solution was filtered and the filtrate was left to stand at room temperature. Blue prisms suitable for X-ray diffration were obtained in a yield of 52% (based on copper nitrate).

Z = 4

 $D_r = 1.770 \text{ Mg m}^{-3}$

0.57 \times 0.16 \times 0.09 mm

7173 measured reflections 3071 independent reflections

2051 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.58 \text{ mm}^{-1}$

T = 298 (2) K

Prism, blue

 $R_{\rm int} = 0.034$

 $\theta_{\rm max} = 25.0^\circ$

Crystal data

 $\begin{bmatrix} Cu(C_7H_2Cl_2O_3)(C_{12}H_8N_2) \end{bmatrix} \cdot H_2O \\ M_r = 466.75 \\ Monoclinic, P_{2_1}/c \\ a = 4.6955 (15) Å \\ b = 20.383 (3) Å \\ c = 18.439 (2) Å \\ \beta = 97.105 (2)^{\circ} \\ V = 1751.2 (6) Å^3 \end{bmatrix}$

Data collection

Bruker SMART CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.466, T_{\max} = 0.871$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0425P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 1.4793P]
$wR(F^2) = 0.111$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
3071 reflections	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
253 parameters	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

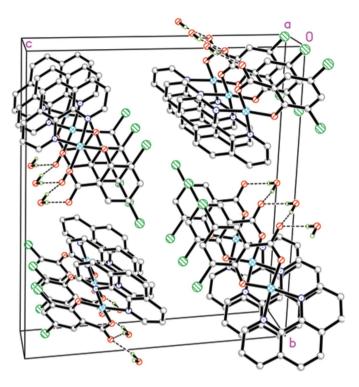

Cu1-O1	1.871 (3)	Cu1-N1	2.002 (4)
Cu1-O3	1.856 (3)	Cu1-N2	1.988 (4)
O3-Cu1-O1	95.30 (13)	O3-Cu1-N1	171.82 (15)
O3-Cu1-N2	90.06 (14)	O1-Cu1-N1	92.14 (16)
O1-Cu1-N2	173.22 (14)	N2-Cu1-N1	82.28 (17)

Table 2

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
04-H1···O2	0.85	2.10	2.922 (5)	164
$O4-H2 \cdot \cdot \cdot O2^i$	0.85	2.17	2.988 (6)	162

H atoms of the water molecule were located in a difference Fourier map. The O-H distances were normalized to 0.85 Å and the H atoms

Figure 2

View of the packing of (I), showing hydrogen-bonded chains running along *a*. Hydrogen bonds are shown as dashed lines and H atoms not included in hydrogen bonding have been omitted.

were allowed to ride on the O atom, with $U_{iso}(H) = 1.5U_{eq}(O)$. All other H atoms were positioned geometrically and refined as riding, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the Key Laboratory of Non-Ferrous Metal Materials and New Processing Technology, Ministry of Education, People's Republic of China, for financial support.

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). *SMART* (Version 5.0) and *SAINT* (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.

Guthrie, J. W., Lintvedt, R. L. & Glick, M. D. (1980). Inorg. Chem. 19, 2949– 2955.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stemmler, A. J., Kampt, J. W., Kirk, M. L. & Pecorato, V. L. (1995). J. Am. Chem. Soc. 11, 6368–6372.

Zhong, F., Zhang, S. H., Jiang, Y. M. & Zhong, X. X. (2003). Chin. J. Inorg. Chem. 19, 318–320.